Note: Explain your answers.

- (1) Consider the polynomial $f(x) = x^{15} 2 \in \mathbb{F}_7[x]$.
 - (a) Show that the splitting field of f(x) is generated by a primitive 45th root of unity.
 - (b) Determine $n \ge 1$ so that the extension \mathbb{F}_{7^n} contains a splitting field of f(x).
 - (c) Compute the degree over \mathbb{F}_7 of the splitting field of f(x).
- (2) Let p be an odd prime and ζ_p be a primitive pth root of unity.
 - (a) Describe $Gal(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ and determine all primes p such that $\mathbb{Q}(\zeta_p)$ contains a subfield L whose Galois group over \mathbb{Q} is isomorphic to $\mathbb{Z}/5\mathbb{Z}$.
 - (b) Using (a), prove that there exists a finite Galois extension E of \mathbb{Q} such that $Gal(E/\mathbb{Q}) \cong \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.
- (3) (a) Find a projective resolution of $\mathbb{Z}/12\mathbb{Z}$ in the category of abelian groups.
 - (b) Compute $\operatorname{Tor}_{i}^{\mathbb{Z}}(\mathbb{Z}/12\mathbb{Z},\mathbb{Z}/9\mathbb{Z})$ for $i \geq 0$.
 - (c) Compute $\operatorname{Ext}_{\mathbb{Z}}^{i}(\mathbb{Z}/12\mathbb{Z},\mathbb{Z}/8\mathbb{Z})$ for $i \geq 0$.
- (4) Consider the polynomial $f(x) = x^4 + ax^2 + b \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q} . The roots of this polynomial are of the form $\pm \alpha, \pm \beta$. Let K be the splitting field of f(x) with Galois group $G = \operatorname{Gal}(K/\mathbb{Q})$.
 - (a) Show that |G| = 4 or 8.
 - (b) Show that if |G| = 4 then only the identity element of G fixes a root of f(x).
 - (c) Show that G is the direct product of two cyclic groups of order 2 if and only if b is a square in \mathbb{Q} .
 - (d) Show that G is cyclic of order 4 if and only if $\frac{a^2-4b}{b}$ is a square in \mathbb{Q} .